I punti di Lagrange L1, L2 e L3

I Punti di Lagrange sono i punti appartenenti al piano dell’orbita (della Luna per esempio, in moto rispetto alla Terra), che si muovono in modo che la configurazione spaziale Terra-Luna-Punto non cambi.

Ricerca dei punti di Lagrange L1 L2 e L3
Ricerca dei punti di Lagrange L1 L2 e L3

Nel sistema Terra-Luna i due corpi ruotano intorno ad un comune centro di massa C, con un moto che, per semplificare, supponiamo circolare uniforme. Le rispettive distanze della Terra e della Luna dal punto C sono:

  • d_T=\frac{1}{1+k}\ d
  • d_L=\frac{k}{1+k}\ d

Dove k è il rapporto M_T/M_L e d la distanza tra i due centri di massa.
L’accelerazione centripeta che agisce sulla Terra nel suo moto circolare uniforme rispetto al punto C è pari alla forza gravitazionale dovuta dall’azione della Luna:

  • a_T=\frac{v^2}{d_T}=\frac{4 \pi^2}{T^2} d_T=G \frac{M_L}{d^2} \Rightarrow \omega = \frac{4 \pi^2}{T^2}=G M_L \frac{1+k}{d^3}.

Un corpo di massa m\ll\ M_T e M_L, posto sulla retta congiungente Terra-Luna, è soggetto alle attrazioni gravitazionali di entrambi i corpi; scelto il sistema di riferimento in modo che l’origine coincida con la Terra e l’asse x con la retta Terra-Luna si ha:

  • Forza di attrazione della Terra: F_T=G \frac{m\ M_T}{x^2}, sull’asse Terra-corpo e verso diretto in direzione della Terra, quindi con il segno positivo per x < 0 e negativo per x > 0.
  • Forza di attrazione della Luna: F_L=G \frac{m\ M_L}{(d-x)^2}, sull’asse corpo-Luna e verso diretto in direzione della Luna, quindi con il segno positivo per x < d e negativo per x > d.

Tale corpo inoltre ruota intorno al punto C con moto circolare uniforme, con la stessa velocità angolare \omega della Terra, in modo da rimanere sull’asse x, su di esso agisce una forza centripeta:

F_C=m a_c=m \frac{v^2}{r} = m \frac{4 \pi^2 r^2}{T^2} \frac{1}{r} = \\ = m \frac{4 \pi^2}{T^2}(x-d_T)= m \omega \left(x-\frac{d}{1+k} \right)=G m \frac{M_L}{d^3}(1+k)\left(x-\frac{d}{1+k}\right)= \\ = G m M_L \left(\frac{(1+k)x}{d^3} -\frac{1}{d^2}\right).

Sommando le forze che agiscono sulla massa m otteniamo che l’accelerazione che essa subisce è:

a = \begin{cases} G \frac{M_T}{x^2} + G \frac{M_L}{(d-x)^2} + G M_L \left(\frac{(1+k)x}{d^3} - \frac{1}{d^2}\right) & \text{se }\; x < 0 \\ -G \frac{M_T}{x^2} + G \frac{M_L}{(d-x)^2} + G M_L \left(\frac{(1+k)x}{d^3} - \frac{1}{d^2}\right) & \text{se }\; 0 < x < d \\ -G \frac{M_T}{x^2} - G \frac{M_L}{(d-x)^2} + G M_L \left(\frac{(1+k)x}{d^3} - \frac{1}{d^2}\right) & \text{se }\; x > d \end{cases}

Cerchiamo i punti in cui tale accelerazione risulta nulla. Con una opportuna scelta delle unità di misura è possibile scrivere le seguenti equazioni:

Grafico della risultante delle forze
Grafico della risultante delle forze
\begin{cases} \frac{k}{x^2} + \frac{1}{(1-x)^2} + (1+k)x-1 = 0 & \text{se} \, x < 0 \\ - \frac{k}{x^2} + \frac{1}{(1-x)^2} + (1+k)x-1 = 0 & \text{se} \, 0 < x < d \\ - \frac{k}{x^2} - \frac{1}{(1-x)^2} + (1+k)x-1 = 0 & \text{se} \, x > d \end{cases}

Queste tre equazioni ammettono ciascuna una soluzione nel rispettivo insieme di definizione. Sono questi i punti di Lagrange L_1\, \left( x < 0 \right), L_2\, \left( 0 < x < d \right) e L_3\, \left( x > d \right).

Nel caso del sistema Terra-Luna si ha

  • M_T=5,98 \times 10^{24} kg
  • M_L=7,35 \times 10^{22} kg

quindi k=81,30. Si può applicare un qualunque metodo numerico per la ricerca degli zeri alle suddette equazioni nel rispettivo intervallo di definizione, ottenendo:

  • L_1=0,849 d = 3,23 \times 10^5 km quindi poco prima della Luna
  • L_2=1,168 d = 4,44 \times 10^5 km appena oltre la Luna
  • L_3=0,993 d = 3,77 \times 10^5 km sul semiasse negativo all’incirca nella parte diametralmente opposta alla Luna.

I Punti di Lagrange L_1 e L_2 si trovano quindi in prossimità della Luna, mentre L_3 si trova ad una distanza pari all’incirca alla distanza Terra-Luna sul lato opposto a quest’ultima.